In a nutshell: Newton's method for finding extrema in *n* dimensions

Given a continuous and differentiable real-valued function f of a vector variable with one initial approximation of a minimum \mathbf{x}_0 where the Hessian, that is, the Jacobian of the gradient, of f at that point, $\mathbf{H}(f)(\mathbf{x}_0) = \mathbf{J}(\nabla f)(\mathbf{x}_0)$ is invertible. If the gradient is already the zero vector, we are done. This algorithm uses iteration, Taylor series and solving systems of linear equations to approximate a minimum.

Parameters:

\mathcal{E}_{step}	The maximum error in the value of the minimum cannot exceed this value.
\mathcal{E}_{abs}	The difference in the value of the function after successive steps cannot exceed this value.
Ν	The maximum number of iterations.

- 1. Let $k \leftarrow 0$.
- 2. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 3. Solve $\mathbf{J}(\nabla f)(\mathbf{x}_k)\Delta\mathbf{x}_k = -\nabla f(\mathbf{x}_k)$ for $\Delta\mathbf{x}_k$ where $\mathbf{J}(\nabla f)(\mathbf{x})$ is the Jacobian of ∇f evaluated at the point \mathbf{x} .

Let $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \Delta \mathbf{x}_k$.

- a. If \mathbf{x}_{k+1} has any entries that are not finite floating-point numbers, return signalling a failure to converge.
- b. If $\|\mathbf{x}_{k+1} \mathbf{x}_k\|_2 < \varepsilon_{\text{step}}$ and $|f(\mathbf{x}_{k+1}) f(\mathbf{x}_k)| < \varepsilon_{\text{abs}}$, return \mathbf{x}_{k+1} . A sufficient condition that this is a minima is that the Hessian is positive definite (all positive eigenvalues).
- 4. Increment *k* and return to Step 2.

Convergence

If *h* is the error, it can be show that the error decreases according to $O(h^2)$. This technique is not guaranteed to converge if there is a minimum, for the Hessian could be near singular, causing the next approximation to be arbitrarily far from the previous approximation.